Quantcast
Channel: embedded – JB Systems Tech
Viewing all articles
Browse latest Browse all 14

Has The Time Come for SOC Embedded FPGAs?

$
0
0

Shrinking technology nodes at lower product costs plus the rise of compute-intensive IOT applications help Menta’s e-FPGA outlook.

By John Blyler, IP Systems

The following are edited portions of my video interview the Design Automation Conference (DAC) 2016 with Menta’s business development director, Yoan Dupret. – JB

John Blyler’s interview with Yoan Dupret from Menta

Blyler: You’re technology enables designers to include an FPGA almost anywhere on a System-on-Chip (SOC). How is your approach unique from others that purport to do the same thing?

Dupret: Our technology enables placement of an Field Programmable Gate Array (FPGA) onto a silicon ASIC, which is why we call it an embedded FPGA (e-FPGA). How are we different from others? First, let me explain why others have failed in the past while we are succeeding now.

In the past, the time just wasn’t right. Further, the cost of developing the SOC was still too high. Today, all of those challenges are changing. This has been confirmed by our customers and from GSA studies that explain the importance of having some programmable logic inside an ASIC.

Now, the time is right. We have spent the last few years focusing on research and development (R&D) to strengthen our tools, architectures and to build out competencies. Toolwise, we have a more robust and easier to use GUI and our architecture has gone through several changes from the first generation.

Our approach uses standard cell-based ASICs so we are not disruptive to the EDA too flow of our customers. Our hard IP just plugs into the regular chip design flow using all of the classical techniques for CMOS design. Naturally, we support testing with standard scan chain tests and impressive test coverage. We believe our FPGA performance is better than the competitions in terms of numbers of lookup tables per of area, of frequencies, and low power consumption.

Blyler: Are you targeting a specific area for these embedded FPGAs, e.g., IOT?

Dupret: IOT is one of the markets we are looking at but it is not the only one. Why? That’s because the embedded FPGA fabric can actually go anywhere you have RTL, which is intensively parallel programming based (see Figure 1). For example, we are working on a cryptographic algorithms inside the e-FPGA for IOT applications. We have tractions on the filters for digital radios (IIR and FLIR filters), which is another IOT application. Further, we have customers in the industrial and automotive audio and image processing space

Figure 1: SOC architecture with e-FPGA core, which is programmed after the tape-out. (Courtesy of Menta)

Do you remember when Intel bought Altera, a large FPGA company? This acquisition was, in part, for Intel’s High Performance Computing (HPC) applications. Now they have several big FPGAs from Altera just next to very high frequency processing cores. But there is another way to do achieve this level of HPC. For example, a design could consists of a very big parallel intensive HPC architecture with a lot of lower frequency CPUs and next to each of these CPUs you could have an e-FPGa.

Blyler: At DAC this year, there are a number of companies from France. Is there something going on there? Will it become the next Silicon Valley?

Dupret: Yes, that is true. There are quite some companies doing EDA. Others are doing IP, some of which are well known. For example, Dolphin, is based in Grenoble and it is also part of the ecosystem there.

Blyler: That’s great to see. Thank you, Yoan.

To learn more about Menta’s latest technology: “Menta Delivers Industry’s Highest Performing Embedded Programmable Logic IP for SoCs.”

Originally posted on System Design Engineering

The post Has The Time Come for SOC Embedded FPGAs? appeared first on JB Systems Tech.


Viewing all articles
Browse latest Browse all 14

Latest Images

Trending Articles





Latest Images